Countdown header img desk

MAI SUNT 00:00:00:00

MAI SUNT

X

Countdown header img  mob

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

2+1 GRATIS

la TOATE Cartile si Jocurile pentru copii

Alegi 3, platesti doar 2!

Comanda acum!
Close

Math for Programmers: 3D Graphics, Machine Learning, and Simulations with Python

Math for Programmers: 3D Graphics, Machine Learning, and Simulations with Python - Paul Orland

Math for Programmers: 3D Graphics, Machine Learning, and Simulations with Python


In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks

Citeste mai mult

-10%

transport gratuit

293.70Lei

326.33 Lei

Sau 29370 de puncte

!

Fiecare comanda noua reprezinta o investitie pentru viitoarele tale comenzi. Orice comanda plasata de pe un cont de utilizator primeste in schimb un numar de puncte de fidelitate, In conformitate cu regulile de conversiune stabilite. Punctele acumulate sunt incarcate automat in contul tau si pot fi folosite ulterior, pentru plata urmatoarelor comenzi.

Livrare in 3-5 saptamani

Descrierea produsului


In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative -careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks
In Math for Programmers you'll explore important mathematical concepts through hands-on coding.

Summary
To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest programming fields.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code!

About the book
In Math for Programmers you'll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting-and lucrative!-careers in some of today's hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you'll master the key Python libraries used to turn them into real-world software applications.

What's inside

Vector geometry for computer graphics
Matrices and linear transformations
Core concepts from calculus
Simulation and optimization
Image and audio processing
Machine learning algorithms for regression and classification

About the reader
For programmers with basic skills in algebra.

About the author
Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land.

Table of Contents

1 Learning math with code

PART I - VECTORS AND GRAPHICS

2 Drawing with 2D vectors

3 Ascending to the 3D world

4 Transforming vectors and graphics

5 Computing transformations with matrices

6 Generalizing to higher dimensions

7 Solving systems of linear equations

PART 2 - CALCULUS AND PHYSICAL SIMULATION

8 Understanding rates of change

9 Simulating moving objects

10 Working with symbolic expressions

11 Simulating force fields

12 Optimizing a physical system

13 Analyzing sound waves with a Fourier series

PART 3 - MACHINE LEARNING APPLICATIONS

14 Fitting functions to data

15 Classifying data with logistic regression

16 Training neural networks

Citeste mai mult

Detaliile produsului

De pe acelasi raft

Parerea ta e inspiratie pentru comunitatea Libris!

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one