headerdesktop  comgr21iun

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile herald30iun

MAI SUNT 00:00:00:00

MAI SUNT

X

Radical and Ion-pairing Strategies in Asymmetric Organocatal

  • Radical and Ion-pairing Strategies in Asymmetric Organocatal
  • Radical and Ion-pairing Strategies in Asymmetric Organocatal
  • Radical and Ion-pairing Strategies in Asymmetric Organocatal
  • Radical and Ion-pairing Strategies in Asymmetric Organocatal

Radical and Ion-pairing Strategies in Asymmetric Organocatal

Considering the challenge of sustainability facing our society in the coming decades, catalysis is without any doubt a research area of major importance. In this regard, asymmetric organocatalysis, now considered a pillar of green chemistry, deserves particular attention.

The first chapter of this volume examines the topic of asymmetric organocatalysis in light of radical chemistry. Recent important progress in this field has been attained by promoting the formation and harnessing the high reactivity of open-shell intermediates. Merging organocatalysis with radical chemistry has been the key to solving some longstanding bottlenecks, and has also significantly contributed to reinforcing the key role of organocatalysis in asymmetric catalysis. This chapter presents the most significant developments in this area, with a particular focus on asymmetric SOMO- and photoredox-organocatalyzed transformations.

Chapter 2 focuses on quaternary ammonium salts (R4N+X-), especially chiral derivatives, and their behavior as unique catalysts in organocatalysis. Forming chiral ion-pairs capable of promoting asymmetric reactions, they also operate as unique "transporters" involved in phase transfer catalytic processes between liquid-liquid or liquid-solid systems. Furthermore, they offer unique opportunities when forming cooperative ion-paired entities R4N+X-, allowing a synergistic implication of the counter-ion X- either as Bronsted bases or Lewis bases. Specific design of such chiral catalysts in modern chemistry and better insight into their mode of activation facilitates efficient and unprecedented chemical transformations. This chapter provides an overview of the use of chiral quaternary ammonium salts in organocatalysis, emphasizing both general mechanistic aspects and the scope of this approach.
Citeste mai mult

-10%

transport gratuit

169.83Lei

188.70 Lei

Sau 16983 de puncte

!

Fiecare comanda noua reprezinta o investitie pentru viitoarele tale comenzi. Orice comanda plasata de pe un cont de utilizator primeste in schimb un numar de puncte de fidelitate, In conformitate cu regulile de conversiune stabilite. Punctele acumulate sunt incarcate automat in contul tau si pot fi folosite ulterior, pentru plata urmatoarelor comenzi.

Livrare in 2-4 saptamani

Descrierea produsului

Considering the challenge of sustainability facing our society in the coming decades, catalysis is without any doubt a research area of major importance. In this regard, asymmetric organocatalysis, now considered a pillar of green chemistry, deserves particular attention.

The first chapter of this volume examines the topic of asymmetric organocatalysis in light of radical chemistry. Recent important progress in this field has been attained by promoting the formation and harnessing the high reactivity of open-shell intermediates. Merging organocatalysis with radical chemistry has been the key to solving some longstanding bottlenecks, and has also significantly contributed to reinforcing the key role of organocatalysis in asymmetric catalysis. This chapter presents the most significant developments in this area, with a particular focus on asymmetric SOMO- and photoredox-organocatalyzed transformations.

Chapter 2 focuses on quaternary ammonium salts (R4N+X-), especially chiral derivatives, and their behavior as unique catalysts in organocatalysis. Forming chiral ion-pairs capable of promoting asymmetric reactions, they also operate as unique "transporters" involved in phase transfer catalytic processes between liquid-liquid or liquid-solid systems. Furthermore, they offer unique opportunities when forming cooperative ion-paired entities R4N+X-, allowing a synergistic implication of the counter-ion X- either as Bronsted bases or Lewis bases. Specific design of such chiral catalysts in modern chemistry and better insight into their mode of activation facilitates efficient and unprecedented chemical transformations. This chapter provides an overview of the use of chiral quaternary ammonium salts in organocatalysis, emphasizing both general mechanistic aspects and the scope of this approach.
Citeste mai mult

Detaliile produsului

De pe acelasi raft

Parerea ta e inspiratie pentru comunitatea Libris!

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one