headerdesktop happydays15iul25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile happydays15iul25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎉 Happy Days cu REDUCERI 🎉

Până la -80%

la cărți, jocuri și accesorii

⏰ Doar între 15-17 iulie »

Introducing Mlops: How to Scale Machine Learning in the Enterprise

Introducing Mlops: How to Scale Machine Learning in the Enterprise - Mark Treveil

Introducing Mlops: How to Scale Machine Learning in the Enterprise


More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact.

This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout.

This book helps you:

  • Fulfill data science value by reducing friction throughout ML pipelines and workflows
  • Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
  • Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
  • Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Citeste mai mult

-15%

transport gratuit

PRP: 409.14 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

347.77Lei

347.77Lei

409.14 Lei

Primesti 347 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Plaseaza rapid comanda

Important icon msg

Poti comanda acest produs introducand numarul tau de telefon. Vei fi apelat de un operator Libris.ro in cele mai scurt timp pentru prealuarea datelor necesare.

Completeaza mai jos numarul tau de telefon

Descrierea produsului


More than half of the analytics and machine learning (ML) models created by organizations today never make it into production. Some of the challenges and barriers to operationalization are technical, but others are organizational. Either way, the bottom line is that models not in production can't provide business impact.

This book introduces the key concepts of MLOps to help data scientists and application engineers not only operationalize ML models to drive real business change but also maintain and improve those models over time. Through lessons based on numerous MLOps applications around the world, nine experts in machine learning provide insights into the five steps of the model life cycle--Build, Preproduction, Deployment, Monitoring, and Governance--uncovering how robust MLOps processes can be infused throughout.

This book helps you:

  • Fulfill data science value by reducing friction throughout ML pipelines and workflows
  • Refine ML models through retraining, periodic tuning, and complete remodeling to ensure long-term accuracy
  • Design the MLOps life cycle to minimize organizational risks with models that are unbiased, fair, and explainable
  • Operationalize ML models for pipeline deployment and for external business systems that are more complex and less standardized
Citeste mai mult

S-ar putea sa-ti placa si

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one