headerdesktop mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Târgul Ghetuțelor🎁

Cadouri de Moș Nicolae

-77%, -30%, -50%

Comandă aici!

The Lambda Calculus. Its Syntax and Semantics

De (autor): Henk Barendregt

The Lambda Calculus. Its Syntax and Semantics - Henk Barendregt

The Lambda Calculus. Its Syntax and Semantics

De (autor): Henk Barendregt


The Lambda Calculus, treated in this book mainly in its untyped version, consists of a collection of expressions, called lambda terms, together with ways how to rewrite and identify these. In the parts conversion, reduction, theories, and models the view is respectively 'algebraic', computational, with more ('coinductive') identifications, and finally set-theoretic. The lambda terms are built up from variables, using application and abstraction. Applying a term F to M has as intention that F is a function, M its argument, and FM the result of the application. This is only the intention: to actually obtain the result one has to rewrite the expression FM according to the reduction rules. Abstraction provides a way to create functions according to the effect when applying them. The power of the theory comes from the fact that computations, both terminating and infinite, can be expressed by lambda terms at a 'comfortable' level of abstraction.
Citește mai mult

-20%

transport gratuit

PRP: 285.20 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

228.16Lei

228.16Lei

285.20 Lei

Primești 228 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Descrierea produsului


The Lambda Calculus, treated in this book mainly in its untyped version, consists of a collection of expressions, called lambda terms, together with ways how to rewrite and identify these. In the parts conversion, reduction, theories, and models the view is respectively 'algebraic', computational, with more ('coinductive') identifications, and finally set-theoretic. The lambda terms are built up from variables, using application and abstraction. Applying a term F to M has as intention that F is a function, M its argument, and FM the result of the application. This is only the intention: to actually obtain the result one has to rewrite the expression FM according to the reduction rules. Abstraction provides a way to create functions according to the effect when applying them. The power of the theory comes from the fact that computations, both terminating and infinite, can be expressed by lambda terms at a 'comfortable' level of abstraction.
Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo