headerdesktop craciuntargtimer16dec25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile craciuntargtimer16dec25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎄Târgul cadourilor de Crăciun✨

Reduceri de până la -74%!

Răsfoiește & Dăruiește povești>

Deep Reinforcement Learning with Python - Second Edition

De (autor): Sudharsan Ravichandiran

Deep Reinforcement Learning with Python - Second Edition - Sudharsan Ravichandiran

Deep Reinforcement Learning with Python - Second Edition

De (autor): Sudharsan Ravichandiran


An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms
Key FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations
Book DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari games
Who this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for
Citește mai mult

-20%

transport gratuit

PRP: 404.98 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

323.98Lei

323.98Lei

404.98 Lei

Primești 323 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Indisponibil

Plasează rapid comanda

Important icon msg

Poți comanda acest produs introducând numărul tău de telefon. În cel mai scurt timp vei fi apelat de un operator Libris pentru preluarea datelor necesare.

Completează mai jos numărul tău de telefon

Descrierea produsului


An example-rich guide for beginners to start their reinforcement and deep reinforcement learning journey with state-of-the-art distinct algorithms
Key FeaturesCovers a vast spectrum of basic-to-advanced RL algorithms with mathematical explanations of each algorithmLearn how to implement algorithms with code by following examples with line-by-line explanationsExplore the latest RL methodologies such as DDPG, PPO, and the use of expert demonstrations
Book DescriptionWith significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit.In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples.The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI's baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research.By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
What you will learnUnderstand core RL concepts including the methodologies, math, and codeTrain an agent to solve Blackjack, FrozenLake, and many other problems using OpenAI GymTrain an agent to play Ms Pac-Man using a Deep Q NetworkLearn policy-based, value-based, and actor-critic methodsMaster the math behind DDPG, TD3, TRPO, PPO, and many othersExplore new avenues such as the distributional RL, meta RL, and inverse RLUse Stable Baselines to train an agent to walk and play Atari games
Who this book is forIf you're a machine learning developer with little or no experience with neural networks interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for
Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo

Salut! Te pot ajuta?

X