headerdesktop mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile mosnick18noi25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

🎁Târgul Ghetuțelor🎁

Cadouri de Moș Nicolae

-77%, -30%, -50%

Comandă aici!

Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

De (autor): Ethan Cowan

Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp - Ethan Cowan

Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

De (autor): Ethan Cowan

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira and explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases
Citește mai mult

-20%

transport gratuit

PRP: 495.94 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

396.75Lei

396.75Lei

495.94 Lei

Primești 396 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Plasează rapid comanda

Important icon msg

Poți comanda acest produs introducând numărul tău de telefon. În cel mai scurt timp vei fi apelat de un operator Libris pentru preluarea datelor necesare.

Completează mai jos numărul tău de telefon

Descrierea produsului

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira and explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases
Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Istoricul tău de navigare

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo

Salut! Te pot ajuta?

X