Mai sunt
00
00
00
00
X
Categorii:
inchide meniul
TOP 2019
Brand Minds
L-V 08:00 - 20:00 0371.781.781

Neural Networks and Deep Learning - Charu C Aggarwal

4

289.8  Lei 340.94  Lei

sau 28980 de puncte. Detalii.

Indisponibil

Cod: BRT9783319944623

An aparitie: 2018

Autor: Charu C Aggarwal

Categoria: Miscellaneous

Editie: cartonata

Editura: Springer

Format: 258 x 182 x 36 mm

Limba: English

Nr. pagini: 497

Completati formularul de mai jos pentru a fi anuntat cand acest produs revine pe stoc.

Adauga in wishlist

Trebuie sa fii logat

Transport Gratuit peste 50 de lei
Puncte de fidelitate
30 de Zile Drept de Retur
 

This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories:



The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec.





Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines.



Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10.





The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.

Cartea Neural Networks and Deep Learning - Charu C Aggarwal face parte din categoria Miscellaneous a librariei online Libris.ro si este scrisa de Charu C Aggarwal.
Livrarea se face din stocul furnizorului nostru din UK in aproximativ 15 zile lucratoare. Transportul este gratuit prin curier rapid, oriunde in Romania, pentru orice comanda de minimum 50 de lei. Pentru orice solicitare sau informatie suplimentara apelati call center-ul Libris de luni pana vineri intre orele 8-20.


sus
Feedback Wishlist