headerdesktop englezawk13iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile englezawk13iun25

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

📢Weekend English Books

până la -35%! &

🛵Transport la DOAR 4.99 lei!

Răsfoiește și comandă!

Outlier Detection in Python

Outlier Detection in Python - Brett Kennedy

Outlier Detection in Python

Learn how to identify the unusual, interesting, extreme, or inaccurate parts of your data. Data scientists have two main tasks: finding patterns in data and finding the exceptions. These outliers are often the most informative parts of data, revealing hidden insights, novel patterns, and potential problems. Outlier Detection in Python is a practical guide to spotting the parts of a dataset that deviate from the norm, even when they're hidden or intertwined among the expected data points. In Outlier Detection in Python you'll learn how to: - Use standard Python libraries to identify outliers
- Select the most appropriate detection methods
- Combine multiple outlier detection methods for improved results
- Interpret your results effectively
- Work with numeric, categorical, time series, and text data Outlier detection is a vital tool for modern business, whether it's discovering new products, expanding markets, or flagging fraud and other suspicious activities. This guide presents the core tools for outlier detection, as well as techniques utilizing the Python data stack familiar to data scientists. To get started, you'll only need a basic understanding of statistics and the Python data ecosystem. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Outliers--values that appear inconsistent with the rest of your data--can be the key to identifying fraud, performing a security audit, spotting bot activity, or just assessing the quality of a dataset. This unique guide introduces the outlier detection tools, techniques, and algorithms you'll need to find, understand, and respond to the anomalies in your data. About the book Outlier Detection in Python illustrates the principles and practices of outlier detection with diverse real-world examples including social media, finance, network logs, and other important domains. You'll explore a comprehensive set of statistical methods and machine learning approaches to identify and interpret the unexpected values in tabular, text, time series, and image data. Along the way, you'll explore scikit-learn and PyOD, apply key OD algorithms, and add some high value techniques for real world OD scenarios to your toolkit. What's inside - Python libraries to identify outliers
- Combine outlier detection methods
- Interpret your results About the reader For Python programmers familiar with tools like pandas and NumPy, and the basics of sta
Citeste mai mult

-15%

transport gratuit

PRP: 594.92 Lei

!

Acesta este Pretul Recomandat de Producator. Pretul de vanzare al produsului este afisat mai jos.

505.68Lei

505.68Lei

594.92 Lei

Primesti 505 puncte

Important icon msg

Primesti puncte de fidelitate dupa fiecare comanda! 100 puncte de fidelitate reprezinta 1 leu. Foloseste-le la viitoarele achizitii!

Livrare in 2-4 saptamani

Descrierea produsului

Learn how to identify the unusual, interesting, extreme, or inaccurate parts of your data. Data scientists have two main tasks: finding patterns in data and finding the exceptions. These outliers are often the most informative parts of data, revealing hidden insights, novel patterns, and potential problems. Outlier Detection in Python is a practical guide to spotting the parts of a dataset that deviate from the norm, even when they're hidden or intertwined among the expected data points. In Outlier Detection in Python you'll learn how to: - Use standard Python libraries to identify outliers
- Select the most appropriate detection methods
- Combine multiple outlier detection methods for improved results
- Interpret your results effectively
- Work with numeric, categorical, time series, and text data Outlier detection is a vital tool for modern business, whether it's discovering new products, expanding markets, or flagging fraud and other suspicious activities. This guide presents the core tools for outlier detection, as well as techniques utilizing the Python data stack familiar to data scientists. To get started, you'll only need a basic understanding of statistics and the Python data ecosystem. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Outliers--values that appear inconsistent with the rest of your data--can be the key to identifying fraud, performing a security audit, spotting bot activity, or just assessing the quality of a dataset. This unique guide introduces the outlier detection tools, techniques, and algorithms you'll need to find, understand, and respond to the anomalies in your data. About the book Outlier Detection in Python illustrates the principles and practices of outlier detection with diverse real-world examples including social media, finance, network logs, and other important domains. You'll explore a comprehensive set of statistical methods and machine learning approaches to identify and interpret the unexpected values in tabular, text, time series, and image data. Along the way, you'll explore scikit-learn and PyOD, apply key OD algorithms, and add some high value techniques for real world OD scenarios to your toolkit. What's inside - Python libraries to identify outliers
- Combine outlier detection methods
- Interpret your results About the reader For Python programmers familiar with tools like pandas and NumPy, and the basics of sta
Citeste mai mult

S-ar putea sa-ti placa si

Parerea ta e inspiratie pentru comunitatea Libris!

Istoricul tau de navigare

Acum se comanda

Noi suntem despre carti, si la fel este si

Newsletter-ul nostru.

Aboneaza-te la vestile literare si primesti un cupon de -10% pentru viitoarea ta comanda!

*Reducerea aplicata prin cupon nu se cumuleaza, ci se aplica reducerea cea mai mare.

Ma abonez image one
Ma abonez image one