headerdesktop transpgratuit8ian26

MAI SUNT 00:00:00:00

MAI SUNT

X

headermobile transpgratuit8ian26

MAI SUNT 00:00:00:00

MAI SUNT

X

Promotii popup img

😍TRANSPORT GRATUIT📚

la ORICE comandă

oriunde în România

Comandă acum!

Stochastic Finite Elements: A Spectral Approach, Revised Edition

De (autor): Roger G. Ghanem

Stochastic Finite Elements: A Spectral Approach, Revised Edition - Roger G. Ghanem

Stochastic Finite Elements: A Spectral Approach, Revised Edition

De (autor): Roger G. Ghanem


Discrepancies frequently occur between a physical system's responses and predictions obtained from mathematical models. The Spectral Stochastic Finite Element Method (SSFEM) has proven successful at forecasting a variety of uncertainties in calculating system responses. This text analyzes a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach.
Random system parameters are modeled as second-order stochastic processes, defined by their mean and covariance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is employed to represent these processes in terms of a countable set of uncorrected random variables, casting the problem in a finite dimensional setting. Various spectral approximations for the stochastic response of the system are obtained. Implementing the concept of generalized inverse leads to an explicit expression for the response process as a multivariate polynomial functional of a set of uncorrelated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral representation is identified in terms of polynomial chaos. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.
Citește mai mult

-10%

transport gratuit

PRP: 105.09 Lei

!

Acesta este Prețul Recomandat de Producător. Prețul de vânzare al produsului este afișat mai jos.

94.58Lei

94.58Lei

105.09 Lei

Primești 94 puncte

Important icon msg

Primești puncte de fidelitate după fiecare comandă! 100 puncte de fidelitate reprezintă 1 leu. Folosește-le la viitoarele achiziții!

Livrare in 2-4 saptamani

Descrierea produsului


Discrepancies frequently occur between a physical system's responses and predictions obtained from mathematical models. The Spectral Stochastic Finite Element Method (SSFEM) has proven successful at forecasting a variety of uncertainties in calculating system responses. This text analyzes a class of discrete mathematical models of engineering systems, identifying key issues and reviewing relevant theoretical concepts, with particular attention to a spectral approach.
Random system parameters are modeled as second-order stochastic processes, defined by their mean and covariance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is employed to represent these processes in terms of a countable set of uncorrected random variables, casting the problem in a finite dimensional setting. Various spectral approximations for the stochastic response of the system are obtained. Implementing the concept of generalized inverse leads to an explicit expression for the response process as a multivariate polynomial functional of a set of uncorrelated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral representation is identified in terms of polynomial chaos. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.
Citește mai mult

S-ar putea să-ți placă și

De același autor

Părerea ta e inspirație pentru comunitatea Libris!

Acum se comandă

Noi suntem despre cărți, și la fel este și

Newsletter-ul nostru.

Abonează-te la veștile literare și primești un cupon de -10% pentru viitoarea ta comandă!

*Reducerea aplicată prin cupon nu se cumulează, ci se aplică reducerea cea mai mare.

Mă abonez image one
Mă abonez image one
Accessibility Logo